The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 11 of 11

Showing per page

Order by Relevance | Title | Year of publication

A basis of ℤₘ, II

Min TangYong-Gao Chen — 2007

Colloquium Mathematicae

Given a set A ⊂ ℕ let σ A ( n ) denote the number of ordered pairs (a,a’) ∈ A × A such that a + a’ = n. Erdős and Turán conjectured that for any asymptotic basis A of ℕ, σ A ( n ) is unbounded. We show that the analogue of the Erdős-Turán conjecture does not hold in the abelian group (ℤₘ,+), namely, for any natural number m, there exists a set A ⊆ ℤₘ such that A + A = ℤₘ and σ A ( n ̅ ) 5120 for all n̅ ∈ ℤₘ.

On near-perfect numbers

Min TangXiaoyan MaMin Feng — 2016

Colloquium Mathematicae

For a positive integer n, let σ(n) denote the sum of the positive divisors of n. We call n a near-perfect number if σ(n) = 2n + d where d is a proper divisor of n. We show that the only odd near-perfect number with four distinct prime divisors is 3⁴·7²·11²·19².

A basis of Zₘ

Min TangYong-Gao Chen — 2006

Colloquium Mathematicae

Let σ A ( n ) = | ( a , a ' ) A ² : a + a ' = n | , where n ∈ N and A is a subset of N. Erdős and Turán conjectured that for any basis A of order 2 of N, σ A ( n ) is unbounded. In 1990, Imre Z. Ruzsa constructed a basis A of order 2 of N for which σ A ( n ) is bounded in the square mean. In this paper, we show that there exists a positive integer m₀ such that, for any integer m ≥ m₀, we have a set A ⊂ Zₘ such that A + A = Zₘ and σ A ( n ̅ ) 768 for all n̅ ∈ Zₘ.

On near-perfect and deficient-perfect numbers

Min TangXiao-Zhi RenMeng Li — 2013

Colloquium Mathematicae

For a positive integer n, let σ(n) denote the sum of the positive divisors of n. Let d be a proper divisor of n. We call n a near-perfect number if σ(n) = 2n + d, and a deficient-perfect number if σ(n) = 2n - d. We show that there is no odd near-perfect number with three distinct prime divisors and determine all deficient-perfect numbers with at most two distinct prime factors.

Some results on Poincaré sets

Min-wei TangZhi-Yi Wu — 2020

Czechoslovak Mathematical Journal

It is known that a set H of positive integers is a Poincaré set (also called intersective set, see I. Ruzsa (1982)) if and only if dim ( X H ) = 0 , where X H : = x = n = 1 x n 2 n : x n { 0 , 1 } , x n x n + h = 0 for all n 1 , h H and dim denotes the Hausdorff dimension (see C. Bishop, Y. Peres (2017), Theorem 2.5.5). In this paper we study the set X H by replacing 2 with b > 2 . It is surprising that there are some new phenomena to be worthy of studying. We study them and give several examples to explain our results.

Page 1

Download Results (CSV)