Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

A second-order finite volume element method on quadrilateral meshes for elliptic equations

Min Yang — 2006

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, by use of affine biquadratic elements, we construct and analyze a finite volume element scheme for elliptic equations on quadrilateral meshes. The scheme is shown to be of second-order in H 1 -norm, provided that each quadrilateral in partition is almost a parallelogram. Numerical experiments are presented to confirm the usefulness and efficiency of the method.

A second-order finite volume element method on quadrilateral meshes for elliptic equations

Min Yang — 2007

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, by use of affine biquadratic elements, we construct and analyze a finite volume element scheme for elliptic equations on quadrilateral meshes. The scheme is shown to be of second-order in -norm, provided that each quadrilateral in partition is almost a parallelogram. Numerical experiments are presented to confirm the usefulness and efficiency of the method.

Postprocessing of a finite volume element method for semilinear parabolic problems

Min YangChunjia BiJiangguo Liu — 2009

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we study a postprocessing procedure for improving accuracy of the finite volume element approximations of semilinear parabolic problems. The procedure amounts to solve a source problem on a coarser grid and then solve a linear elliptic problem on a finer grid after the time evolution is finished. We derive error estimates in the and norms for the standard finite volume element scheme and an improved error estimate in the norm. Numerical...

Page 1

Download Results (CSV)