In this paper, by use of affine biquadratic elements, we construct and analyze a finite volume element scheme for elliptic equations on quadrilateral meshes. The scheme is shown to be of second-order in -norm, provided that each quadrilateral in partition is almost a parallelogram. Numerical experiments are presented to confirm the usefulness and efficiency of the method.
In this paper, by use of affine biquadratic elements, we construct
and analyze a finite volume element scheme for elliptic equations on
quadrilateral meshes. The scheme is shown to be of second-order in
-norm, provided that each quadrilateral in partition is almost
a parallelogram. Numerical experiments are presented to confirm the
usefulness and efficiency of the method.
In this paper, we study a postprocessing procedure for improving
accuracy of the finite volume element approximations of semilinear
parabolic problems. The procedure amounts to solve a source problem
on a coarser grid and then solve a linear elliptic problem on a
finer grid after the time evolution is finished. We derive error
estimates in the
and
norms for the standard finite
volume element scheme and an improved error estimate in the
norm. Numerical...
Download Results (CSV)