The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

A large family of Boolean functions

Huaning LiuMin Zhang — 2016

Acta Arithmetica

In a series of papers many Boolean functions with good cryptographic properties were constructed using number-theoretic methods. We construct a large family of Boolean functions by using polynomials over finite fields, and study their cryptographic properties: maximum Fourier coefficient, nonlinearity, average sensitivity, sparsity, collision and avalanche effect.

Solutions for the p-order Feigenbaum’s functional equation h ( g ( x ) ) = g p ( h ( x ) )

Min ZhangJianguo Si — 2014

Annales Polonici Mathematici

This work deals with Feigenbaum’s functional equation ⎧ h ( g ( x ) ) = g p ( h ( x ) ) , ⎨ ⎩ g(0) = 1, -1 ≤ g(x) ≤ 1, x∈[-1,1] where p ≥ 2 is an integer, g p is the p-fold iteration of g, and h is a strictly monotone odd continuous function on [-1,1] with h(0) = 0 and |h(x)| < |x| (x ∈ [-1,1], x ≠ 0). Using a constructive method, we discuss the existence of continuous unimodal even solutions of the above equation.

On the least almost-prime in arithmetic progression

Jinjiang LiMin ZhangYingchun Cai — 2023

Czechoslovak Mathematical Journal

Let 𝒫 r denote an almost-prime with at most r prime factors, counted according to multiplicity. Suppose that a and q are positive integers satisfying ( a , q ) = 1 . Denote by 𝒫 2 ( a , q ) the least almost-prime 𝒫 2 which satisfies 𝒫 2 a ( mod q ) . It is proved that for sufficiently large q , there holds 𝒫 2 ( a , q ) q 1 . 8345 . This result constitutes an improvement upon that of Iwaniec (1982), who obtained the same conclusion, but for the range 1 . 845 in place of 1 . 8345 .

Page 1

Download Results (CSV)