In a series of papers many Boolean functions with good cryptographic properties were constructed using number-theoretic methods. We construct a large family of Boolean functions by using polynomials over finite fields, and study their cryptographic properties: maximum Fourier coefficient, nonlinearity, average sensitivity, sparsity, collision and avalanche effect.
This work deals with Feigenbaum’s functional equation
⎧ ,
⎨
⎩ g(0) = 1, -1 ≤ g(x) ≤ 1, x∈[-1,1]
where p ≥ 2 is an integer, is the p-fold iteration of g, and h is a strictly monotone odd continuous function on [-1,1] with h(0) = 0 and |h(x)| < |x| (x ∈ [-1,1], x ≠ 0). Using a constructive method, we discuss the existence of continuous unimodal even solutions of the above equation.
Let be a sufficiently large integer. We prove that almost all sufficiently large even integers can be represented as
where with .
Let denote an almost-prime with at most prime factors, counted according to multiplicity. Suppose that and are positive integers satisfying . Denote by the least almost-prime which satisfies . It is proved that for sufficiently large , there holds
This result constitutes an improvement upon that of Iwaniec (1982), who obtained the same conclusion, but for the range in place of .
Download Results (CSV)