Computing homology.
A brief introduction to the Conley index theory is presented. The emphasis is the fundamental ideas of Conley's approach to dynamical systems and how it avoids some of the difficulties inherent in the study of nonlinear systems.
We present a generalization of topological transition matrices introduced in [6].
The purpose of this article is to introduce a method for computing the homology groups of cellular complexes composed of cubes. We will pay attention to issues of storage and efficiency in performing computations on large complexes which will be required in applications to the computation of the Conley index. The algorithm used in the homology computations is based on a local reduction procedure, and we give a subquadratic estimate of its computational complexity. This estimate is rigorous in two...
Page 1