By using the concepts of limited -converging operators between two Banach spaces and , -sets and -limited sets in Banach spaces, we obtain some characterizations of these concepts relative to some well-known geometric properties of Banach spaces, such as -Dunford–Pettis property of order and Pelczyński’s property of order , .
We introduce and study two new classes of Banach spaces, the so-called sequentially Right Banach spaces of order , and those defined by the dual property, the sequentially Right Banach spaces of order for . These classes of Banach spaces are characterized by the notions of -limited sets in the corresponding dual space and subsets of the involved Banach space, respectively. In particular, we investigate whether the injective tensor product of a Banach space and a reflexive Banach space...
Download Results (CSV)