In this paper, we give a new approach to the study of Weyl-type theorems. Precisely, we introduce the concepts of spectral valued and spectral partitioning functions. Using two natural order relations on the set of spectral valued functions, we reduce the question of relationship between Weyl-type theorems to the study of the set difference between the parts of the spectrum that are involved. This study solves completely the question of relationship between two spectral valued functions, comparable...
A bounded operator T ∈ L(X) acting on a Banach space X is said to satisfy generalized Weyl's theorem if the complement in the spectrum of the B-Weyl spectrum is the set of all eigenvalues which are isolated points of the spectrum. We prove that generalized Weyl's theorem holds for several classes of operators, extending previous results of Istrăţescu and Curto-Han. We also consider the preservation of generalized Weyl's theorem between two operators T ∈ L(X), S ∈ L(Y) intertwined or asymptotically...
We study the stability of a-Browder-type theorems for orthogonal direct sums of operators. We give counterexamples which show that in general the properties , , and are not preserved under direct sums of operators. However, we prove that if and are bounded linear operators acting on Banach spaces and having the property , then has the property if and only if , where is the upper semi-B-Weyl spectrum of . We obtain analogous preservation results for the properties , and with...
Download Results (CSV)