By means of the fixed-point methods and the properties of the -pseudo almost periodic functions, we prove the existence, uniqueness, and exponential stability of the -pseudo almost periodic solutions for some models of recurrent neural networks with mixed delays and time-varying coefficients, where is a positive measure. A numerical example is given to illustrate our main results.
We investigate the Cohen-Grosberg differential equations with mixed delays and time-varying coefficient: Several useful results on the functional space of such functions like completeness and composition theorems are established. By using the fixed-point theorem and some properties of the doubly measure pseudo almost automorphic functions, a set of sufficient criteria are established to ensure the existence, uniqueness and global exponential stability of a -pseudo almost automorphic solution. The...
Download Results (CSV)