On normal lattice configurations and simultaneously normal numbers
Let be integers, and let be a sequence of real numbers. In this paper we prove that the lower bound of the discrepancy of the double sequence coincides (up to a logarithmic factor) with the lower bound of the discrepancy of ordinary sequences in -dimensional unit cube . We also find a lower bound of the discrepancy (up to a logarithmic factor) of the sequence (Korobov’s problem).