A singular parabolic Anderson model.
We study the asymptotics of the even moments of solutions to a stochastic wave equation in spatial dimension 3 with linear multiplicative spatially homogeneous gaussian noise that is white in time. Our main theorem states that these moments grow more quickly than one might expect. This phenomenon is well known for parabolic stochastic partial differential equations, under the name of intermittency. Our results seem to be the first example of this phenomenon for hyperbolic equations. For comparison,...
For a superprocess under a stochastic flow in one dimension, we prove that it has a density with respect to the Lebesgue measure. A stochastic partial differential equation is derived for the density. The regularity of the solution is then proved by using Krylov’s -theory for linear SPDE.
Page 1