Some typical properties of dimensions of sets and measures.
CONTENTSIntroduction.....................................................................................................................................5 1. General results.........................................................................................................................7 1.1. Residual sets.........................................................................................................................7 1.2. Generic properties of abstract functional equations..............................................................8II....
A directed-edge-reinforced random walk on graphs is considered. Criteria for the walk to end up in a limit cycle are given. Asymptotic stability of some neural networks is shown.
Let be a compact quasi self-similar set in a complete metric space and let denote the space of all probability measures on , endowed with the Fortet-Mourier metric. We will show that for a typical (in the sense of Baire category) measure in the lower concentration dimension is equal to , while the upper concentration dimension is equal to the Hausdorff dimension of .
A relationship between the information dimension and the average dimension of a measure is given. Properties of the average dimension are studied.
Let X be a locally compact, separable metric space. We prove that , where and stand for the concentration dimension and the topological dimension of X, respectively.
We give lower and upper estimates of the capacity of self-similar measures generated by iterated function systems where are bi-lipschitzean transformations.
Si dimostra che arbitrariamente vicino ad ogni equazione differenziale in (§ 1) ne esiste almeno una per cui il corrispondente problema di Cauchy (1) è sprovvisto di soluzioni. Similmente, arbitrariamente vicino ad ogni equazione differenziale in (§2) ne esiste almeno una per cui le successive approssimazioni (3), relative al problema di Cauchy (2), non convergono.
Page 1