Currently displaying 1 – 14 of 14

Showing per page

Order by Relevance | Title | Year of publication

On ( σ , τ ) -derivations in prime rings

Mohammad AshrafNadeem-ur-Rehman — 2002

Archivum Mathematicum

Let R be a 2-torsion free prime ring and let σ , τ be automorphisms of R . For any x , y R , set [ x , y ] σ , τ = x σ ( y ) - τ ( y ) x . Suppose that d is a ( σ , τ ) -derivation defined on R . In the present paper it is shown that ( i ) if R satisfies [ d ( x ) , x ] σ , τ = 0 , then either d = 0 or R is commutative ( i i ) if I is a nonzero ideal of R such that [ d ( x ) , d ( y ) ] = 0 , for all x , y I , and d commutes with both σ and τ , then either d = 0 or R is commutative. ( i i i ) if I is a nonzero ideal of R such that d ( x y ) = d ( y x ) , for all x , y I , and d commutes with τ , then R is commutative. Finally a related result has been obtain for ( σ , τ ) -derivation....

Backstepping based nonlinear adaptive control for the extended nonholonomic double integrator

Waseem AbbasiFazal ur RehmanIbrahim Shah — 2017

Kybernetika

In this paper a steering control algorithm for the Extended Nonholonomic Double Integrator is presented. An adaptive backstepping based controller is proposed which yields asymptotic stabilization and convergence of the closed loop system to the origin. This is achieved by transforming the original system into a new system which can be globally asymptotically stabilized. Once the new system is stabilized, the stability of the original system can be easily established. Stability of the closed loop...

Smooth super twisting sliding mode based steering control for nonholonomic systems transformable into chained form

Waseem AbbasiFazal ur RehmanIbrahim Shah — 2018

Kybernetika

In this article, a new solution to the steering control problem of nonholonomic systems, which are transformable into chained form is investigated. A smooth super twisting sliding mode control technique is used to steer nonholonomic systems. Firstly, the nonholonomic system is transformed into a chained form system, which is further decomposed into two subsystems. Secondly, the second subsystem is steered to the origin by using smooth super twisting sliding mode control. Finally, the first subsystem...

Properties of k-beta function with several variables

Abdur RehmanShahid MubeenRabia SafdarNaeem Sadiq — 2015

Open Mathematics

In this paper, we discuss some properties of beta function of several variables which are the extension of beta function of two variables. We define k-beta function of several variables and derive some properties of this function which are the extension of k-beta function of two variables, recently defined by Diaz and Pariguan [4]. Also, we extend the formula Γk(2z) proved by Kokologiannaki [5] via properties of k-beta function.

Page 1

Download Results (CSV)