We deal with the optimal portfolio problem in discrete-time setting. Employing the discrete Itô formula, which is developed by Fujita, we establish the discrete Hamilton–Jacobi–Bellman (d-HJB) equation for the value function. Simple examples of the d-HJB equation are also discussed.
We deal with numerical computation of the nonlinear partial differential equations (PDEs) of Black–Scholes type which incorporate the effect of transaction costs. Our proposed technique surmounts the difficulty of infinite domains and unbounded values of the solutions. Numerical implementation shows the validity of our scheme.
Modern physics theories claim that the dynamics of interfaces between
the two-phase is described by the evolution equations involving the
curvature and various kinematic energies. We consider the motion of
spiral-shaped polygonal curves by its crystalline curvature, which
deserves a mathematical model of real crystals. Exploiting the
comparison principle, we show the local existence and uniqueness of the
solution.
Download Results (CSV)