The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
An inequality, which generalizes and unifies some recently proved Carlson type inequalities, is proved. The inequality contains a certain number of “blocks” and it is shown that these blocks are, in a sense, optimal and cannot be removed or essentially changed. The proof is based on a special equivalent representation of a concave function (see [6, pp. 320-325]). Our Carlson type inequality is used to characterize Peetre’s interpolation functor (see [26]) and its Gagliardo closure on couples of...
We present a direct proof of a known result that the Hardy operator Hf(x) = 1/x ∫
f(t) dt in the space L = L(0, ∞) can be written as H = I - U, where U is a shift operator (Ue = e, n ∈ Z) for some orthonormal basis {e}. The basis {e} is constructed by using classical Laguerre polynomials. We also explain connections with the Euler differential equation of the first order y' - 1/x y = g and point out some generalizations to the case with weighted L
(a, b) spaces.
Download Results (CSV)