The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, we prove a conditional principle of Gibbs type for random weighted measures of the form , being a sequence of i.i.d. real random variables. Our work extends the preceding results of Gamboa and Gassiat (1997), in allowing to consider thin constraints. Transportation-like ideas are used in the proof.
In this paper, we consider Poincaré inequalities for non-euclidean metrics on ℝ. These inequalities enable us to derive precise dimension free concentration inequalities for product measures. This technique is appropriate for a large scope of concentration rate: between exponential and gaussian and beyond. We give equivalent functional forms of these Poincaré type inequalities in terms of transportation-cost inequalities and inf-convolution inequalities. Workable sufficient conditions are given...
In this paper, we prove a conditional principle of Gibbs type for
random weighted measures of the form
, ( being a
sequence of i.i.d. real random variables. Our work extends the
preceding results of Gamboa and Gassiat (1997), in allowing to consider thin
constraints. Transportation-like ideas are used in the proof.
Download Results (CSV)