Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

On a Class of Vertex Folkman Numbers

Nenov, Nedyalko — 2002

Serdica Mathematical Journal

Let a1 , . . . , ar, be positive integers, i=1 ... r, m = ∑(ai − 1) + 1 and p = max{a1 , . . . , ar }. For a graph G the symbol G → (a1 , . . . , ar ) means that in every r-coloring of the vertices of G there exists a monochromatic ai -clique of color i for some i ∈ {1, . . . , r}. In this paper we consider the vertex Folkman numbers F (a1 , . . . , ar ; m − 1) = min |V (G)| : G → (a1 , . . . , ar ) and Km−1 ⊂ G} We prove that F (a1 , . . . , ar ; m − 1) = m + 6, if p = 3 and m ≧ 6 (Theorem 3)...

Sequences of Maximal Degree Vertices in Graphs

Khadzhiivanov, NickolayNenov, Nedyalko — 2004

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 05C35. Let Γ(M ) where M ⊂ V (G) be the set of all vertices of the graph G adjacent to any vertex of M. If v1, . . . , vr is a vertex sequence in G such that Γ(v1, . . . , vr ) = ∅ and vi is a maximal degree vertex in Γ(v1, . . . , vi−1), we prove that e(G) ≤ e(K(p1, . . . , pr)) where K(p1, . . . , pr ) is the complete r-partite graph with pi = |Γ(v1, . . . , vi−1) Γ(vi )|.

An Inequality for Generalized Chromatic Graphs Едно неравенство за обобщени хроматични графи

Bojilov, AsenNenov, Nedyalko — 2012

Union of Bulgarian Mathematicians

Асен Божилов, Недялко Ненов - Нека G е n-върхов граф и редицата от степените на върховете му е d1, d2, . . . , dn, а V(G) е множеството от върховете на G. Степента на върха v бележим с d(v). Най-малкото естествено число r, за което V(G) има r-разлагане V(G) = V1 ∪ V2 ∪ · · · ∪ Vr, Vi ∩ Vj = ∅, , i 6 = j такова, че d(v) ≤ n − |Vi|, ∀v ∈ Vi, i = 1, 2, . . . , r е означено с ϕ(G). В тази работа доказваме неравенството ... Let G be a simple n-vertex graph with degree sequence d1, d2, . ....

Page 1

Download Results (CSV)