The Property (DN) and the Exponential Representation of Holomorphic Functions.
We investigate ramification properties with respect to parameters of integrals (distributions) of a class of singular functions over an unbounded cycle which may intersect the singularities of the integrand. We generalize the classical result of Nilsson dealing with the case where the cycle is bounded and contained in the set of holomorphy of the integrand. Such problems arise naturally in the study of exponential representation at infinity of solutions to certain PDE's (see [Z]).
We deal with a class of integral equations on the unit circle in the complex plane with a regular part and with rotations of the form (*) x(t) + a(t)(Tx)(t) = b(t), where and are of the form (3) below. We prove that under some assumptions on analytic continuation of the given functions, (*) is a singular integral equation for m odd and is a Fredholm equation for m even. Further, we prove that T is an algebraic operator with characteristic polynomial . By means of the Riemann boundary value...
The aim of this paper is to prove the existence of the global attractor of the Cauchy problem for a semilinear degenerate damped hyperbolic equation involving the Grushin operator with a locally Lipschitz nonlinearity satisfying a subcritical growth condition.
The main aim of this paper is to prove that a nuclear Fréchet space E has the property (H) (resp. (Ω)) if and only if every holomorphic function on E (resp. on some dense subspace of E) can be written in the exponential form.
It is shown that if E is a Frechet space with the strong dual E* then H(E*), the space of holomorphic functions on E* which are bounded on every bounded set in E*, has the property (DN) when E ∈ (DN) and that H(E*) ∈ (Ω) when E ∈ (Ω) and either E* has an absolute basis or E is a Hilbert-Frechet-Montel space. Moreover the complementness of ideals J(V) consisting of holomorphic functions on E* which are equal to 0 on V in H(E*) for every nuclear Frechet space E with E ∈ (DN) ∩ (Ω) is stablished when...
This paper is devoted to the study of cloaking via anomalous localized resonance (CALR) in the two- and three-dimensional quasistatic regimes. CALR associated with negative index materials was discovered by Milton and Nicorovici [21] for constant plasmonic structures in the two-dimensional quasistatic regime. Two key features of this phenomenon are the localized resonance, i.e., the fields blow up in some regions and remain bounded in some others, and the connection between the localized resonance...
Let be a sequence of non-decreasing functions from into . Under some suitable hypotheses of , we will prove that if , , satisfies , then and moreover , where is a positive constant depending only on and . This extends some results in J. Bourgain and H-M. Nguyen [A new characterization of Sobolev spaces, C. R. Acad Sci. Paris, Ser. 343 (2006) 75-80] and H-M. Nguyen [Some new characterizations of Sobolev spaces, J. Funct. Anal. 237 (2006) 689-720]. We also present some partial results...
We establish the boundedness for the commutators of multilinear Hausdorff operators on the product of some weighted Morrey-Herz type spaces with variable exponent with their symbols belonging to both Lipschitz space and central BMO space. By these, we generalize and strengthen some previously known results.
A stochastic integral equation corresponding to a probability space is considered. This equation plays the role of a dynamical system in many problems of stochastic control with the control variable . One constructs stochastic processes , connected with a Markov chain and with the space . The expected values of (i = 1,2) are respectively the expected value of an integral representation of a solution x(t) of the equation and that of its derivative .
Page 1 Next