An Overview of the Proof of the Splitting Theorem in Spaces with Non-Negative Ricci Curvature
We prove that any Kantorovich potential for the cost function = /2 on a Riemannian manifold (, ) is locally semiconvex in the “region of interest”, without any compactness assumption on , nor any assumption on its curvature. Such a region of interest is of full -measure as soon as the starting measure does not charge – 1-dimensional rectifiable sets.
We prove that any Kantorovich potential for the cost function = /2 on a Riemannian manifold (, ) is locally semiconvex in the “region of interest”, without any compactness assumption on , nor any assumption on its curvature. Such a region of interest is of full -measure as soon as the starting measure does not charge – 1-dimensional rectifiable sets.
In this paper we summarize some of the main results of a forthcoming book on this topic, where we examine in detail the theory of curves of maximal slope in a general metric setting, following some ideas introduced in [11, 5], and study in detail the case of the Wasserstein space of probability measures. In the first part we derive new general conditions ensuring convergence of the implicit time discretization scheme to a curve of maximal slope, the uniqueness, and the error estimates. In the second...
Page 1