The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Soit une extension galoisienne non abélienne, de degré , de groupe . On étudie dans cet article la structure du groupe des unités de , en tant que module sur l’algèbre . Cela permet de donner quelques propriétés arithmétiques de , comme la détermination des images de par les applications normes sur les sous-corps de , la participation de au nombre de classes de , et des conditions nécessaires d’existence d’une unité de Minkowski dans .
Download Results (CSV)