In 1998 Victor Kac classified infinite-dimensional -graded Lie superalgebras of finite depth. We construct new examples of infinite-dimensional Lie superalgebras with a -gradation of infinite depth and finite growth and classify -graded Lie superalgebras of infinite depth and finite growth under suitable hypotheses.
In this paper we study the irreducible finite dimensional representations of the quantized enveloping algebra associated to , at the roots of unity. It is known that these representations are parametrized, up to isomorphisms, by the conjugacy classes of the group . We get a complete classification of the representations corresponding to the submaximal unipotent conjugacy class and therefore a proof of the De Concini-Kac conjecture about the dimension of the -modules at the roots of in the...
Download Results (CSV)