The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In 1998 Victor Kac classified infinite-dimensional -graded Lie superalgebras of finite depth. We construct new examples of infinite-dimensional Lie superalgebras with a -gradation of infinite depth and finite growth and classify -graded Lie superalgebras of infinite depth and finite growth under suitable hypotheses.
In this paper we study the irreducible finite dimensional representations of the quantized enveloping algebra associated to , at the roots of unity. It is known that these representations are parametrized, up to isomorphisms, by the conjugacy classes of the group . We get a complete classification of the representations corresponding to the submaximal unipotent conjugacy class and therefore a proof of the De Concini-Kac conjecture about the dimension of the -modules at the roots of in the...
Download Results (CSV)