Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Homogenization of the Maxwell Equations: Case II. Nonlinear conductivity

Niklas Wellander — 2002

Applications of Mathematics

The Maxwell equations with uniformly monotone nonlinear electric conductivity in a heterogeneous medium, which may be non-periodic, are homogenized by two-scale convergence. We introduce a new set of function spaces appropriate for the nonlinear Maxwell system. New compactness results, of two-scale type, are proved for these function spaces. We prove existence of a unique solution for the heterogeneous system as well as for the homogenized system. We also prove that the solutions of the heterogeneous...

Homogenization of the Maxwell equations: Case I. Linear theory

Niklas Wellander — 2001

Applications of Mathematics

The Maxwell equations in a heterogeneous medium are studied. Nguetseng’s method of two-scale convergence is applied to homogenize and prove corrector results for the Maxwell equations with inhomogeneous initial conditions. Compactness results, of two-scale type, needed for the homogenization of the Maxwell equations are proved.

Multiscale convergence and reiterated homogenization of parabolic problems

Anders HolmbomNils SvanstedtNiklas Wellander — 2005

Applications of Mathematics

Reiterated homogenization is studied for divergence structure parabolic problems of the form u ε / t - div a x , x / ε , x / ε 2 , t , t / ε k u ε = f . It is shown that under standard assumptions on the function a ( x , y 1 , y 2 , t , τ ) the sequence { u ϵ } of solutions converges weakly in L 2 ( 0 , T ; H 0 1 ( Ω ) ) to the solution u of the homogenized problem u / t - div ( b ( x , t ) u ) = f .

On two-scale convergence and related sequential compactness topics

Anders HolmbomJeanette SilfverNils SvanstedtNiklas Wellander — 2006

Applications of Mathematics

A general concept of two-scale convergence is introduced and two-scale compactness theorems are stated and proved for some classes of sequences of bounded functions in L 2 ( Ω ) involving no periodicity assumptions. Further, the relation to the classical notion of compensated compactness and the recent concepts of two-scale compensated compactness and unfolding is discussed and a defect measure for two-scale convergence is introduced.

Page 1

Download Results (CSV)