The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove a result on approximations to a real number θ by algebraic numbers of degree ≤ 2 in the case when we have certain information about the uniform Diophantine exponent ω̂ for the linear form x₀ + θx₁ + θ²x₂.
Let . Suppose that are linearly independent over . For Diophantine exponents
we prove
We prove a result on the existence of linear forms of a given Diophantine type.
Download Results (CSV)