Let be a classical Lie algebra, , either , , or and let be a nilpotent element of . We study various properties of the centralisers . The first four sections deal with rather elementary questions, like the centre of , commuting varieties associated with , or centralisers of commuting pairs. The second half of the paper addresses problems related to different Poisson structures on and symmetric invariants of .
We consider contractions of Lie and Poisson algebras and the behaviour of their centres under contractions. A polynomial Poisson algebra is said to be of Kostant type, if its centre is freely generated by homogeneous polynomials such that they give Kostant’s regularity criterion on are linear independent if and only if the Poisson tensor has the maximal rank at ). If the initial Poisson algebra is of Kostant type and satisfy a certain degree-equality, then the contraction is also of Kostant...
Recently, E.Feigin introduced a very interesting contraction of a semisimple Lie algebra (see arXiv:1007.0646 and arXiv:1101.1898). We prove that these non-reductive Lie algebras retain good invariant-theoretic properties of . For instance, the algebras of invariants of both adjoint and coadjoint representations of are free, and also the enveloping algebra of is a free module over its centre.
Download Results (CSV)