The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Surprising properties of centralisers in classical Lie algebras

Oksana Yakimova — 2009

Annales de l’institut Fourier

Let 𝔤 be a classical Lie algebra, , either 𝔤𝔩 n , 𝔰𝔭 n , or 𝔰𝔬 n and let e be a nilpotent element of 𝔤 . We study various properties of the centralisers 𝔤 e . The first four sections deal with rather elementary questions, like the centre of 𝔤 e , commuting varieties associated with 𝔤 e , or centralisers of commuting pairs. The second half of the paper addresses problems related to different Poisson structures on 𝔤 e * and symmetric invariants of 𝔤 e .

One-parameter contractions of Lie-Poisson brackets

Oksana Yakimova — 2014

Journal of the European Mathematical Society

We consider contractions of Lie and Poisson algebras and the behaviour of their centres under contractions. A polynomial Poisson algebra 𝒜 = 𝕂 [ 𝔸 n ] is said to be of Kostant type, if its centre Z ( 𝒜 ) is freely generated by homogeneous polynomials F 1 , ... , F r such that they give Kostant’s regularity criterion on 𝔸 n ( d x F i are linear independent if and only if the Poisson tensor has the maximal rank at x ). If the initial Poisson algebra is of Kostant type and F i satisfy a certain degree-equality, then the contraction is also of Kostant...

A remarkable contraction of semisimple Lie algebras

Dmitri I. PanyushevOksana S. Yakimova — 2012

Annales de l’institut Fourier

Recently, E.Feigin introduced a very interesting contraction 𝔮 of a semisimple Lie algebra 𝔤 (see arXiv:1007.0646 and arXiv:1101.1898). We prove that these non-reductive Lie algebras retain good invariant-theoretic properties of 𝔤 . For instance, the algebras of invariants of both adjoint and coadjoint representations of 𝔮 are free, and also the enveloping algebra of 𝔮 is a free module over its centre.

Page 1

Download Results (CSV)