The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

Representation of finite abelian group elements by subsequence sums

David J. GrynkiewiczLuz E. MarchanOscar Ordaz — 2009

Journal de Théorie des Nombres de Bordeaux

Let G C n 1 ... C n r be a finite and nontrivial abelian group with n 1 | n 2 | ... | n r . A conjecture of Hamidoune says that if W = w 1 · ... · w n is a sequence of integers, all but at most one relatively prime to | G | , and S is a sequence over G with | S | | W | + | G | - 1 | G | + 1 , the maximum multiplicity of S at most | W | , and σ ( W ) 0 mod | G | , then there exists a nontrivial subgroup H such that every element g H can be represented as a weighted subsequence sum of the form g = n i = 1 w i s i , with s 1 · ... · s n a subsequence of S . We give two examples showing this does not hold in general, and characterize the counterexamples...

On the Olson and the Strong Davenport constants

Oscar OrdazAndreas PhilippIrene SantosWolfgang A. Schmid — 2011

Journal de Théorie des Nombres de Bordeaux

A subset S of a finite abelian group, written additively, is called zero-sumfree if the sum of the elements of each non-empty subset of S is non-zero. We investigate the maximal cardinality of zero-sumfree sets, i.e., the (small) Olson constant. We determine the maximal cardinality of such sets for several new types of groups; in particular, p -groups with large rank relative to the exponent, including all groups with exponent at most five. These results are derived as consequences of more general...

Page 1

Download Results (CSV)