The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

On the classes of hereditarily p Banach spaces

Parviz AzimiA. A. Ledari — 2006

Czechoslovak Mathematical Journal

Let X denote a specific space of the class of X α , p Banach sequence spaces which were constructed by Hagler and the first named author as classes of hereditarily p Banach spaces. We show that for p > 1 the Banach space X contains asymptotically isometric copies of p . It is known that any member of the class is a dual space. We show that the predual of X contains isometric copies of q where 1 p + 1 q = 1 . For p = 1 it is known that the predual of the Banach space X contains asymptotically isometric copies of c 0 . Here we...

A class of Banach sequence spaces analogous to the space of Popov

Parviz AzimiA. A. Ledari — 2009

Czechoslovak Mathematical Journal

Hagler and the first named author introduced a class of hereditarily l 1 Banach spaces which do not possess the Schur property. Then the first author extended these spaces to a class of hereditarily l p Banach spaces for 1 p < . Here we use these spaces to introduce a new class of hereditarily l p ( c 0 ) Banach spaces analogous of the space of Popov. In particular, for p = 1 the spaces are further examples of hereditarily l 1 Banach spaces failing the Schur property.

Page 1

Download Results (CSV)