On weights which admit the reproducing kernel of Bergman type.
We apply the Rudin idea to represent the Bergman kernel of the Hartogs domain as the sum of a series of weighted Bergman functions in the study of the dependence of this kernel on deformations of the domain. We prove that the Bergman function depends smoothly on the function defining the Hartogs domain.
We consider scalar products on a given Hilbert space parametrized by bounded positive and invertible operators defined on this space, and orthogonal projectors onto a fixed closed subspace of the initial Hilbert space corresponding to these scalar products. We show that the projector is an analytic function of the scalar product, we give the explicit formula for its Taylor expansion, and we prove some algebraic formulas for projectors.
We study the limit behavior of weighted Bergman kernels on a sequence of domains in a complex space , and show that under some conditions on domains and weights, weighed Bergman kernels converge uniformly on compact sets. Then we give a weighted generalization of the theorem given by M. Skwarczyński (1980), highlighting some special property of the domains, on which the weighted Bergman kernels converge uniformly. Moreover, we show that convergence of weighted Bergman kernels implies this property,...
In this paper we show to what extent the closed, singular 2-forms are represented, up to the smooth equivalence, by their restrictions to the corresponding singularity set. In the normalization procedure of the singularity set we find the sufficient conditions for the given closed 2-form to be a pullback of the classical Darboux form. We also find the classification list of simple singularities of the maximal isotropic submanifold-germs in the codimension one Martinet's singular symplectic structures....
Page 1