Arithmétique des rapports de similitudes symplectiques
A toute deux-forme fermée, sur une variété connexe, on associe une famille d’extensions centrales du groupe de ses automorphismes par son . On discute ensuite quelques propriétés de cette construction.
We introduce diffeological real or complex vector spaces. We define the fine diffeology on any vector space. We equip the vector space 𝓗 of square summable sequences with the fine diffeology. We show that the unit sphere 𝓢 of 𝓗, equipped with the subset diffeology, is an embedded diffeological submanifold modeled on 𝓗. We show that the projective space 𝓟, equipped with the quotient diffeology of 𝓢 by 𝓢¹, is also a diffeological manifold modeled on 𝓗. We define the Fubini-Study symplectic...
On étudie quelques propriétés différentiables de l’espace , quotient du tore par un hyperplan irrationnel . On montre d’une part que le groupe des composantes connexes de Diff est isomorphe au groupe des unités de l’algèbre des matrices à coefficients entiers qui stabilisent , et d’autre part que ce groupe est isomorphe au groupe des unités d’un ordre d’un corps de nombres algébriques.
Page 1