The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

On the K -theory and Hattori-Stallings traces of minimal primitive factors of enveloping algebras of semisimple Lie algebras : the singular case

Patrick Polo — 1995

Annales de l'institut Fourier

Let G be a semisimple complex algebraic group and X its flag variety. Let 𝔤 = Lie ( G ) and let U be its enveloping algebra. Let 𝔥 be a Cartan subalgebra of 𝔤 . For μ 𝔥 * , let J μ be the corresponding minimal primitive ideal, let U μ = U / J μ , and let 𝒯 U μ : K 0 ( U m u ) be the Hattori-Stallings trace. Results of Hodges suggest to study this map as a step towards a classification, up to isomorphism or Morita equivalence, of the -algebras U μ . When μ is regular, Hodges has shown that K 0 ( U μ ) K 0 ( X ) . In this case K 0 ( U μ ) is generated by the classes corresponding to...

Page 1

Download Results (CSV)