We consider a diffusion process smoothed with (small) sampling parameter . As in Berzin, León and Ortega (2001), we consider a kernel estimate with window of a function of its variance. In order to exhibit global tests of hypothesis, we derive here central limit theorems for the deviations such as
We consider a diffusion process
smoothed with (small)
sampling parameter . As in Berzin, León and Ortega
(2001), we consider a kernel estimate
with window of a
function of its variance. In order to exhibit global
tests of hypothesis, we derive here central limit theorems for
the deviations such as
In this paper, a very useful lemma (in two versions) is proved: it
simplifies notably the essential step to establish a Lindeberg
central limit theorem for dependent processes. Then, applying this
lemma to weakly dependent processes introduced in Doukhan and
Louhichi (1999), a new central limit theorem is obtained for
sample mean or kernel density estimator. Moreover, by using the
subsampling, extensions under weaker assumptions of these central
limit theorems are provided. All the usual causal...
Download Results (CSV)