We consider the Navier-Stokes equations in unbounded domains of uniform -type. We construct mild solutions for initial values in certain extrapolation spaces associated to the Stokes operator on these domains. Here we rely on recent results due to Farwig, Kozono and Sohr, the fact that the Stokes operator has a bounded -calculus on such domains, and use a general form of Kato’s method. We also obtain information on the corresponding pressure term.
Given a strongly continuous semigroup on a Banach space X with generator A and an element f ∈ D(A²) satisfying and for all t ≥ 0 and some ω > 0, we derive a Landau type inequality for ||Af|| in terms of ||f|| and ||A²f||. This inequality improves on the usual Landau inequality that holds in the case ω = 0.
We give criteria for domination of strongly continuous semigroups in ordered Banach spaces that are not necessarily lattices, and thus obtain generalizations of certain results known in the lattice case. We give applications to semigroups generated by differential operators in function spaces which are not lattices.
We introduce various classes of distribution semigroups distinguished by their behavior at the origin. We relate them to quasi-distribution semigroups and integrated semigroups. A class of such semigroups, called strong distribution semigroups, is characterized through the value at the origin in the sense of Łojasiewicz. It contains smooth distribution semigroups as a subclass. Moreover, the analysis of the behavior at the origin involves intrinsic structural results for semigroups. To this purpose,...
Download Results (CSV)