The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 21

Showing per page

Order by Relevance | Title | Year of publication

Riemannian geometries on spaces of plane curves

Peter W. MichorDavid Mumford — 2006

Journal of the European Mathematical Society

We study some Riemannian metrics on the space of smooth regular curves in the plane, viewed as the orbit space of maps from S 1 to the plane modulo the group of diffeomorphisms of S 1 , acting as reparametrizations. In particular we investigate the metric, for a constant A > 0 , G c A ( h , k ) : = S 1 ( 1 + A κ c ( θ ) 2 ) h ( θ ) , k ( θ ) | c ' ( θ ) | d θ where κ c is the curvature of the curve c and h , k are normal vector fields to c . The term A κ 2 is a sort of geometric Tikhonov regularization because, for A = 0 , the geodesic distance between any two distinct curves is 0, while for A > 0 the...

Closed surfaces with different shapes that are indistinguishable by the SRNF

Eric KlassenPeter W. Michor — 2020

Archivum Mathematicum

The Square Root Normal Field (SRNF), introduced by Jermyn et al. in [5], provides a way of representing immersed surfaces in 3 , and equipping the set of these immersions with a “distance function" (to be precise, a pseudometric) that is easy to compute. Importantly, this distance function is invariant under reparametrizations (i.e., under self-diffeomorphisms of the domain surface) and under rigid motions of 3 . Thus, it induces a distance function on the shape space of immersions, i.e., the space...

Knit products of graded Lie algebras and groups

Michor, Peter W. — 1990

Proceedings of the Winter School "Geometry and Physics"

Let A = k A k and B = k B k be graded Lie algebras whose grading is in 𝒵 or 𝒵 2 , but only one of them. Suppose that ( α , β ) is a derivatively knitted pair of representations for ( A , B ) , i.e. α and β satisfy equations which look “derivatively knitted"; then A B : = k , l ( A k B l ) , endowed with a suitable bracket, which mimics semidirect products on both sides, becomes a graded Lie algebra A ( α , β ) B . This graded Lie algebra is called the knit product of A and B . The author investigates the general situation for any graded Lie subalgebras A and B of a graded...

A note on n-ary Poisson brackets

Michor, Peter W.Vaisman, Izu — 2000

Proceedings of the 19th Winter School "Geometry and Physics"

An n -ary Poisson bracket (or generalized Poisson bracket) on the manifold M is a skew-symmetric n -linear bracket { , , } of functions which is a derivation in each argument and satisfies the generalized Jacobi identity of order n , i.e., σ S 2 n - 1 ( sign σ ) { { f σ 1 , , f σ n } , f σ n + 1 , , f σ 2 n - 1 } = 0 , S 2 n - 1 being the symmetric group. The notion of generalized Poisson bracket was introduced by et al. in [J. Phys. A, Math. Gen. 29, No. 7, L151–L157 (1996; Zbl 0912.53019) and J. Phys. A, Math. Gen. 30, No. 18, L607–L616 (1997; Zbl 0932.37056)]. They established...

Page 1 Next

Download Results (CSV)