The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Convergence in capacity

Pham Hoang Hiep — 2008

Annales Polonici Mathematici

We prove that if ( Ω ) u j u ( Ω ) in Cₙ-capacity then l i m i n f j ( d d c u j ) n 1 u > - ( d d c u ) n . This result is used to consider the convergence in capacity on bounded hyperconvex domains and compact Kähler manifolds.

ω-pluripolar sets and subextension of ω-plurisubharmonic functions on compact Kähler manifolds

Le Mau HaiNguyen Van KhuePham Hoang Hiep — 2007

Annales Polonici Mathematici

We establish some results on ω-pluripolarity and complete ω-pluripolarity for sets in a compact Kähler manifold X with fundamental form ω. Moreover, we study subextension of ω-psh functions on a hyperconvex domain in X and prove a comparison principle for the class 𝓔(X,ω) recently introduced and investigated by Guedj-Zeriahi.

Hölder continuous solutions to Monge–Ampère equations

Jean-Pierre DemaillySławomir DinewVincent GuedjPham Hoang HiepSławomir KołodziejAhmed Zeriahi — 2014

Journal of the European Mathematical Society

Let ( X , ω ) be a compact Kähler manifold. We obtain uniform Hölder regularity for solutions to the complex Monge-Ampère equation on X with L p right hand side, p > 1 . The same regularity is furthermore proved on the ample locus in any big cohomology class. We also study the range ( X , ω ) of the complex Monge-Ampère operator acting on ω -plurisubharmonic Hölder continuous functions. We show that this set is convex, by sharpening Kołodziej’s result that measures with L p -density belong to ( X , ω ) and proving that ( X , ω ) has the...

Page 1

Download Results (CSV)