Complexe de de Rham filtré d'une variété singulière
Soit un morphisme propre d’un -schéma intègre dans un germe de courbe algébrique lisse sur . On construit une structure de Hodge mixte sur les cohomologies évanescentes en résolvant les complexes évanescents et par des complexes de Hodge mixtes cohomologiques. Ceci donne une majoration du niveau d’unipotence de l’action de la monodromie.
Let X be a separated scheme of finite type on a field k, the characteristic of k being assumed not equal to 2. We construct a duality for complexes of sheaves of Ox modules with maps differential operators of order ≤ 1. This theory is an extension of the theory built by R. Hartshorne for complexes with linear maps.
Nous démontrons que la donnée de la forme de Seifert entière et de la fonction zêta de Denef-Loeser d’un germe de courbe plane à singularité isolée ne déterminent pas le type topologique de ce germe. De plus, la fonction zêta de Denef-Loeser d’un tel germe ne détermine pas la forme de Seifert entière associée.
Nous donnons une description explicite de la forme de Seifert rationnelle associée à un germe de courbe plane, à isomorphisme près ou à Witt-équivalences près, en termes d’un ensemble complet d’invariants déterminé à partir du type topologique du germe. Ces invariants sont liés à la classification des formes hermitiennes sur les extensions cyclotomiques de et à celle des formes quadratiques sur . En application, nous trouvons des nœuds algébriques cobordants et non isotopes dont la...
Page 1