The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Cet article présente trois résultats distincts. Dans une première partie nous donnons l’asymptotique quand tend vers l’infini des coefficients des polynômes orthogonaux de degré associés au poids , où est une fonction strictement positive suffisamment régulière et . Nous en déduisons l’asymptotique des éléments de l’inverse de la matrice de Toeplitz au moyen d’un noyau intégral Nous prolongeons ensuite un résultat de A. Böttcher et H. Windom relatif à l’asymptotique de la valeur propre...
Dans cet article nous donnons une formule pour les coefficients de l’inverse des matrices de Toeplitz respectivement de symboles (cas singulier) et (cas régulier) où est une fonction appartenant à une classe de fonctions holomorphes sur un disque ouvert contenant le tore et sans zéro sur . Un cas particulier défini par où et sont des polynômes sans zéro sur est traité. Dans le cas où le symbole est singulier, cette formule présente l’intérêt d’avoir un second ordre. Dans tous les...
Download Results (CSV)