The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Singularités éliminables pour des équations semi-linéaires

Pierre BarasMichel Pierre — 1984

Annales de l'institut Fourier

Étant donné L un opérateur différentiel d’ordre m sur un ouvert Ω de R N , K un compact de Ω , γ > 1 et γ ' = γ / ( γ - 1 ) , nous montrons que toute solution de “ L u + u γ = 0 sur Ω K , u 0 ” est solution de “ L u + u γ = 0 sur Ω ” dès que la W m , γ ' -capacité de K est nulle. Cette condition s’avère nécessaire quand L est un opérateur elliptique d’ordre 2. Dans ce cas, nous montrons aussi que ` ` L u + u | u | γ - 1 = μ , u | Ω = 0 ' ' μ est une mesure de Radon bornée sur Ω , a une solution si et seulement si μ ne charge pas les ensembles de W 2 , γ ' -capacité nulle.

Page 1

Download Results (CSV)