Étude des feuilletages transversalement complets et applications
One gives the links between the notions of singular foliations, Γ-structures and momentum mapping in the context of symplectic geometry.
On introduit une relation d’équivalence entre feuilletages ayant la même géométrie transverse. La notion de feuilletage (-variété) est obtenue en utilisant comme modèles locaux les espaces quotients de feuilletages, modulo cette relation d’équivalence. On étudie brièvement les feuillages du point de vue différentiable.
On étudie les champs d’éléments de contact invariants par les translations à droite sur un espace fibré principal différentiable. Cette étude généralise à la fois celle des connexions et celle des -structures. On interprète ainsi en particulier le tenseur de structure d’une -structure comme un tenseur de torsion. On étudie ensuite le problème général de la “subordination” pour les connexions. Existence et propriétés des connexions subordonnées sont étudiées à partir des connexions invariantes...
Soit un feuilletage riemannien sur une variété compacte; est le feuilletage singulier défini par les adhérences des feuilles le feuilletage induit sur une adhérence générique. On étudie le cas où n’a pas de champ transverse non trivial. Alors l’espace quotient a une structure naturelle de variété de Sataké, de manière que la projection soit un morphisme (de variétés de Sataké) avec pliage autour des adhérences singulières.
Let be a lagrangian foliation on a symplectic manifold . The characteristic elements of such a foliation associated to a lagrangian total transversal are obtained; they are a generalisation of the characteristic elements given by J.J. Duistermaat [5]. This technique is applied to give a classification of the germs of lagrangian foliation along a compact leaf. Several examples of classification are given.
Page 1