Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Complétude et flots nul-géodésibles en géométrie lorentzienne

Pierre Mounoud — 2004

Bulletin de la Société Mathématique de France

On étudie la complétude géodésique des flots nul-prégéodésiques sur les variétés lorentziennes compactes, ce qui donne une obstruction à être nul-géodésique. On montre que lorsque l’orthogonal du champ de vecteurs engendrant le flot considéré s’intègre en un feuilletage , la complétude du flot se lit sur l’holonomie de . On montre ainsi qu’il n’existe pas de flots nul-géodésiques lisses sur S 3 . On montre aussi qu’un 2 -tore lorentzien est nul-complet si et seulement si ses feuilletages de type lumière...

Page 1

Download Results (CSV)