Internal stabilization of Maxwell's equations in heterogeneous media.
We consider the stabilization of Maxwell’s equations with space-time variable coefficients in a bounded region with a smooth boundary by means of linear or nonlinear Silver–Müller boundary condition. This is based on some stability estimates that are obtained using the “standard” identity with multiplier and appropriate properties of the feedback. We deduce an explicit decay rate of the energy, for instance exponential, polynomial or logarithmic decays are available for appropriate feedbacks.
We consider the stabilization of Maxwell's equations with space variable coefficients in a bounded region with a smooth boundary, subject to dissipative boundary conditions of memory type on the boundary. Under suitable conditions on the domain and on the permeability and permittivity coefficients, we prove the exponential/polynomial decay of the energy. Our result is mainly based on the use of the multipliers method and the introduction of a suitable Lyapounov functional.
We consider the stabilization of Maxwell's equations with space-time variable coefficients in a bounded region with a smooth boundary by means of linear or nonlinear Silver–Müller boundary condition. This is based on some stability estimates that are obtained using the “standard" identity with multiplier and appropriate properties of the feedback. We deduce an explicit decay rate of the energy, for instance exponential, polynomial or logarithmic decays are available for appropriate feedbacks. ...
Page 1