We prove that an irreducible polynomial derivation in positive characteristic is a Jacobian derivation if and only if there exists an (n-1)-element p-basis of its ring of constants. In the case of two variables we characterize these derivations in terms of their divergence and some nontrivial constants.
Let k be a field, let
be a finite group. We describe linear
-gradings of the polynomial algebra k[x 1, ..., x m] such that the unit component is a polynomial k-algebra.
The notion of a closed polynomial over a field of zero characteristic was introduced by Nowicki and Nagata. In this paper we discuss possible ways to define an analog of this notion over fields of positive characteristic. We are mostly interested in conditions of maximality of the algebra generated by a polynomial in a respective family of rings. We also present a modification of the condition of integral closure and discuss a condition involving partial derivatives.
We obtain two equivalent conditions for m polynomials in n variables to form a p-basis of a ring of constants of some polynomial K-derivation, where K is a unique factorization domain of characteristic p > 0. One of these conditions involves Jacobians while the other some properties of factors. In the case m = n this extends the known theorem of Nousiainen, and we obtain a new formulation of the Jacobian conjecture in positive characteristic.
We observe that the characterization of rings of constants of derivations in characteristic zero as algebraically closed subrings also holds in positive characteristic after some natural adaptation. We also present a characterization of such rings in terms of maximality in some families of rings.
Let k be a field of chracteristic p > 0. We describe all derivations of the polynomial algebra k[x,y], homogeneous with respect to a given weight vector, in particular all monomial derivations, with the ring of constants of the form , where .
Let k be a field. We describe all linear derivations d of the polynomial algebra k[x₁,...,xₘ] such that the algebra of constants with respect to d is generated by linear forms: (a) over k in the case of char k = 0, (b) over in the case of char k = p > 0.
Let A be a commutative algebra without zero divisors over a field k. If A is finitely generated over k, then there exist well known characterizations of all k-subalgebras of A which are rings of constants with respect to k-derivations of A. We show that these characterizations are not valid in the case when the algebra A is not finitely generated over k.
Let K be a unique factorization domain of characteristic p > 0, and let f ∈ K[x₁,...,xₙ] be a polynomial not lying in . We prove that is the ring of constants of a K-derivation of K[x₁,...,xₙ] if and only if all the partial derivatives of f are relatively prime. The proof is based on a generalization of Freudenburg’s lemma to the case of polynomials over a unique factorization domain of arbitrary characteristic.
Download Results (CSV)