Nash-Moser techniques for nonlinear boundary-value problems.
The following result is proved: Let denote a power series space of infinite or of finite type, and equip with its canonical fundamental system of norms, R ∈ 0,∞, 1 ≤ p < ∞. Then a tamely exact sequence (⁎) exists iff α is strongly stable, i.e. , and a linear-tamely exact sequence (*) exists iff α is uniformly stable, i.e. there is A such that for all K. This result extends a theorem of Vogt and Wagner which states that a topologically exact sequence (*) exists iff α is stable, i.e. .
Page 1