Regenerating hyperbolic cone structures from Nil.
This is a survey about Thurston’s geometrization conjecture of three manifolds and Perelman’s proof with the Ricci flow. In particular we review the essential contribution of Hamilton as well as some results in topology relevants for the proof.
We prove that a closed 3-orbifold that fibers over a hyperbolic polygonal 2-orbifold admits a family of hyperbolic cone structures that are viewed as regenerations of the polygon, provided that the perimeter is minimal.
We use hyperbolic geometry to study the limiting behavior of the average number of ways of expressing a number as the sum of two coprime squares. An alternative viewpoint using analytic number theory is also given.
Given a finite-volume hyperbolic 3-manifold, we compose a lift of the holonomy in with the -dimensional irreducible representation of in . In this paper we give local coordinates of the -character variety around the character of this representation. As a corollary, this representation is isolated among all representations that are unipotent at the cusps.
Page 1