The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For finite groups , and the right -action on by group automorphisms, the non-balanced quantum double is defined as the crossed product . We firstly prove that is a finite-dimensional Hopf -algebra. For any subgroup of , can be defined as a Hopf -subalgebra of in the natural way. Then there is a conditonal expectation from onto and the index is . Moreover, we prove that an associated natural inclusion of non-balanced quantum doubles is the crossed product by the group algebra....
Let be a finite group and a subgroup. Denote by (or ) the crossed product of and (or ) with respect to the adjoint action of the latter on the former. Consider the algebra generated by and , where we regard as an idempotent operator on for a certain conditional expectation of onto . Let us call the basic construction from the conditional expectation . The paper constructs a crossed product algebra , and proves that there is an algebra isomorphism between and .
Download Results (CSV)