Let be a finite group and the set of numbers of elements with the same order in . In this paper, we prove that a finite group is isomorphic to , where is one of the Mathieu groups, if and only if the following hold:
(1) ,
(2) .
Counting subgroups of finite groups is one of the most important topics in finite group theory. We classify the finite non-nilpotent groups whose set of numbers of subgroups of possible orders has exactly two elements. We show that if is a non-nilpotent group whose set of numbers of subgroups of possible orders has exactly 2 elements, then has a normal Sylow subgroup of prime order and is solvable. Moreover, as an application we give a detailed description of non-nilpotent groups with...
Download Results (CSV)