We construct a new Boehmian space containing the space 𝓢̃'(ℝⁿ×ℝ₊) and define the extended wavelet transform 𝓦 of a new Boehmian as a tempered Boehmian. In analogy to the distributional wavelet transform, it is proved that the extended wavelet transform is linear, one-to-one, and continuous with respect to δ-convergence as well as Δ-convergence.
We prove that ridgelet transform and adjoint ridgelet transform are continuous, where . We also define the ridgelet transform on the space of tempered distributions on , adjoint ridgelet transform on and establish that they are linear, continuous with respect to the weak-topology, consistent with , respectively, and they satisfy the identity , .
We define various operations on the space of ultra Boehmians like multiplication with certain analytic functions which are Fourier transforms of compactly supported distributions, polynomials, and characters , translation, differentiation. We also prove that the Fourier transform on the space of ultra Boehmians has all the operational properties as in the classical theory.
In this paper, we introduce the notion of the -weakly smooth fuzzy continuous proper function and discuss its properties. We also study several notions of connectedness in smooth fuzzy topological spaces and establish that the product of connected sets (spaces) is not connected in any sense, as well as investigate continuous images of smooth connected sets (spaces) under -weakly smooth fuzzy continuous functions.
Download Results (CSV)