The space : minimal connection and optimal lifting
In this paper, we study a model for the magnetization in thin ferromagnetic films. It comes as a variational problem for -valued maps (the magnetization) of two variables : . We are interested in the behavior of minimizers as . They are expected to be -valued maps of vanishing distributional divergence , so that appropriate boundary conditions enforce line discontinuities. For finite , these line discontinuities are approximated by smooth transition layers, the so-called Néel walls. Néel...
We study the Landau-Lifshitz model for the energy of multi-scale transition layers – called “domain walls” – in soft ferromagnetic films. Domain walls separate domains of constant magnetization vectors that differ by an angle . Assuming translation invariance tangential to the wall, our main result is the rigorous derivation of a reduced model for the energy of the optimal transition layer, which in a certain parameter regime confirms the experimental, numerical and physical predictions: The...
Page 1