The space : minimal connection and optimal lifting
Annales de l'I.H.P. Analyse non linéaire (2005)
- Volume: 22, Issue: 3, page 283-302
- ISSN: 0294-1449
Access Full Article
topHow to cite
topIgnat, Radu. "The space $\mathrm {BV}({S}^{2},{S}^{1})$ : minimal connection and optimal lifting." Annales de l'I.H.P. Analyse non linéaire 22.3 (2005): 283-302. <http://eudml.org/doc/78657>.
@article{Ignat2005,
author = {Ignat, Radu},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {functions of bounded variation; minimal connection; optimal lifting},
language = {eng},
number = {3},
pages = {283-302},
publisher = {Elsevier},
title = {The space $\mathrm \{BV\}(\{S\}^\{2\},\{S\}^\{1\})$ : minimal connection and optimal lifting},
url = {http://eudml.org/doc/78657},
volume = {22},
year = {2005},
}
TY - JOUR
AU - Ignat, Radu
TI - The space $\mathrm {BV}({S}^{2},{S}^{1})$ : minimal connection and optimal lifting
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 3
SP - 283
EP - 302
LA - eng
KW - functions of bounded variation; minimal connection; optimal lifting
UR - http://eudml.org/doc/78657
ER -
References
top- [1] Ambrosio L., Fusco N., Pallara D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford, 2000. Zbl0957.49001MR1857292
- [2] J. Bourgain, H. Brezis, P. Mironescu, maps with values into the circle: minimal connections, lifting and Ginzburg–Landau equation, Publ. Math. Inst. Hautes Etudes Sci., in press. Zbl1051.49030MR2075883
- [3] Brezis H., Coron J.-M., Lieb E.H., Harmonic maps with defects, Comm. Math. Phys.107 (1986) 649-705. Zbl0608.58016MR868739
- [4] H. Brezis, P. Mironescu, A.C. Ponce, maps with values into , in: S. Chanillo, P. Cordaro, N. Hanges, J. Hounie, A. Meziani (Eds.), Geometric Analysis of PDE and Several Complex Variables, Contemp. Math. Ser., Amer. Math. Soc., in press. Zbl1078.46020MR2126464
- [5] Dávila J., Ignat R., Lifting of BVfunctions with values in , C. R. Acad. Sci. Paris, Ser. I337 (2003) 159-164. Zbl1046.46026MR2001127
- [6] Demengel F., Hadiji R., Relaxed energies for functionals on , Nonlinear Anal.19 (1992) 625-641. Zbl0799.46038MR1186122
- [7] Federer H., Geometric Measure Theory, Springer-Verlag, New York, 1969. Zbl0176.00801MR257325
- [8] Giaquinta M., Modica G., Soucek J., Cartesian Currents in the Calculus of Variations, vol. II, Springer, 1998. Zbl0914.49001MR1645086
- [9] R. Ignat, Optimal lifting for , Calc. Var. Partial Differential Equations, in press. Zbl1069.49030
- [10] A.C. Ponce, On the distributions of the form , J. Funct. Anal., in press. Zbl1066.46029MR2053493
- [11] Smets D., On some infinite sums of integer valued Dirac's masses, C. R. Acad. Sci. Paris, Ser. I334 (2002) 371-374. Zbl1154.46308MR1892936
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.