The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Eigenvalue asymptotics for the Pauli operator in strong nonconstant magnetic fields

Georgi D. Raikov — 1999

Annales de l'institut Fourier

We consider the Pauli operator H ( μ ) : = j = 1 m σ j - i x j - μ A j 2 + V selfadjoint in L 2 ( m ; 2 ) , m = 2 , 3 . Here σ j , j = 1 , ... , m , are the Pauli matrices, A : = ( A 1 , ... , A m ) is the magnetic potential, μ > 0 is the coupling constant, and V is the electric potential which decays at infinity. We suppose that the magnetic field generated by A satisfies some regularity conditions; in particular, its norm is lower-bounded by a positive constant, and, in the case m = 3 , its direction is constant. We investigate the asymptotic behaviour as μ of the number of the eigenvalues of H ( μ ) smaller than...

Dynamical Resonances and SSF Singularities for a Magnetic Schrödinger Operator

We consider the Hamiltonian H of a 3D spinless non-relativistic quantum particle subject to parallel constant magnetic and non-constant electric field. The operator H has infinitely many eigenvalues of infinite multiplicity embedded in its continuous spectrum. We perturb H by appropriate scalar potentials V and investigate the transformation of these embedded eigenvalues into resonances. First, we assume that the electric potentials are dilation-analytic with respect to the variable along the magnetic...

Resonances and Spectral Shift Function near the Landau levels

Jean-François BonyVincent BruneauGeorgi Raikov — 2007

Annales de l’institut Fourier

We consider the 3D Schrödinger operator H = H 0 + V where H 0 = ( - i - A ) 2 - b , A is a magnetic potential generating a constant magneticfield of strength b > 0 , and V is a short-range electric potential which decays superexponentially with respect to the variable along the magnetic field. We show that the resolvent of H admits a meromorphic extension from the upper half plane to an appropriate Riemann surface , and define the resonances of H as the poles of this meromorphic extension. We study their distribution near any fixed...

Page 1

Download Results (CSV)