The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Overstability and resonance

Augustin FruchardReinhard Schäfke — 2003

Annales de l’institut Fourier

We consider a singularity perturbed nonlinear differential equation ε u ' = f ( x ) u + + ε P ( x , u , ε ) which we suppose real analytic for x near some interval [ a , b ] and small | u | , | ε | . We furthermore suppose that 0 is a turning point, namely that x f ( x ) is positive if x 0 . We prove that the existence of nicely behaved (as ϵ 0 ) local (at x = 0 ) or global, real analytic or C solutions is equivalent to the existence of a formal series solution u n ( x ) ε n with u n analytic at x = 0 . The main tool of a proof is a new “principle of analytic continuation” for such “overstable” solutions....

Page 1

Download Results (CSV)