Divergence and summability of normal forms of systems of differential equations with nilpotent linear part

Mireille Canalis-Durand; Reinhard Schäfke

Annales de la Faculté des sciences de Toulouse : Mathématiques (2004)

  • Volume: 13, Issue: 4, page 493-513
  • ISSN: 0240-2963

How to cite

top

Canalis-Durand, Mireille, and Schäfke, Reinhard. "Divergence and summability of normal forms of systems of differential equations with nilpotent linear part." Annales de la Faculté des sciences de Toulouse : Mathématiques 13.4 (2004): 493-513. <http://eudml.org/doc/73634>.

@article{Canalis2004,
author = {Canalis-Durand, Mireille, Schäfke, Reinhard},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Hamiltonian system; prenormal form; generic perturbation},
language = {eng},
number = {4},
pages = {493-513},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Divergence and summability of normal forms of systems of differential equations with nilpotent linear part},
url = {http://eudml.org/doc/73634},
volume = {13},
year = {2004},
}

TY - JOUR
AU - Canalis-Durand, Mireille
AU - Schäfke, Reinhard
TI - Divergence and summability of normal forms of systems of differential equations with nilpotent linear part
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2004
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 13
IS - 4
SP - 493
EP - 513
LA - eng
KW - Hamiltonian system; prenormal form; generic perturbation
UR - http://eudml.org/doc/73634
ER -

References

top
  1. [AS64] Abramowitz ( M. ), Stegun Editors ( I.A.), Handbook of Mathematical Functions , Dover Press, New York (1964). 
  2. [Ca91] Canalis-Durand ( M.), Formal expansions of van der Pol equation canard solutions are Gevrey, in Dynamic bifurcations, E. Benoit Ed., Lecture Notes in Math., 1493, 29-39 (1991) ou C. R. Acad. Sci., série I311, p. 27-30 (1990). Zbl0875.34014MR1166995
  3. [Ca03] Canalis-Durand ( M.), Gevrey normal form of system of differential equations with a nilpotent linear part, IRMA Lectures in Mathematics and Theoretical Physics. From Combinatories to Dynamical Systems, F. Fauvet and C. Mitschi eds., W. de Gruyter , (2003), 131-162. Zbl1045.34013MR2049424
  4. [CDG89] Canalis-Durand ( M.), Diener ( F.), Gaetano ( M.), Calcul des valeurs à canard à l'aide de Macsyma, in Mathématiques Finitaires et Analyse Non Standard, Luminy1985, M. Diener, G. Wallet Eds., Preprint URA 212, U.F.R. de Math., Univ. Paris 7, 4 place Jussieu, 75251 Paris Cedex, France, p. 149-163 (1989). 
  5. [CK99] Costin ( O.), Kruskal ( M.), On optimal truncation of divergent series solutions of nonlinear differential systems; Berry smoothing, Proc. R. Soc. Lond., A455, p. 1931-1956 (1999). Zbl0945.34071MR1701558
  6. [CM88] Cerveau ( D.), Moussu ( R.), Groupes d'automorphismes de (C, 0)et équations différentielles ydy + ... = 0, Publ. Soc. Math. , France, 116, p. 459-488 (1988). Zbl0696.58011MR1005391
  7. [CMT01] Canalis-Durand ( M.), Michel ( F.), Teisseyre ( M.), Algorithms for Formal Reduction of Vector Fields Singularities, Journal on Dynamical and Control Systems, vol. 7, n°. 1, p. 101-125 (2001). Zbl1029.34029
  8. [CRSS00] Canalis-Durand ( M.), Ramis ( J.-P.), Schäfke ( R.), Sibuya ( Y.), Gevrey solutions of singularly perturbed differential equations, Für Die Reine Und Angewandte Mathematik, Crelles Journal, 518,p. 95-129 (2000). Zbl0937.34075
  9. [CS00] Canalis-Durand ( M.), Schäfke ( R.), Caractère Gevrey de la normalisation de Frank Loray pour une certaine équation différentielle nilpotente, Communication in Journées des Equations Différentielles et de Calcul Formel , Lille, p. 16-18 (mars 2000 ). 
  10. [CS03] Canalis-Durand ( M.), Schäfke ( R.), On the normal form of a system of differential equations with nilpotent linear part, C. R. Acad. Sci., Sér. I336, p. 129-134 (2003). Zbl1036.34105MR1969566
  11. [Eca85] Ecalle ( J.), Les fonctions résurgentes. III: L'équation du pont et la classification analytique des objets locaux, Publ. Math. Orsay, Paris, p. 85-05 (1985). Zbl0602.30029MR852210
  12. [Gev18] Gevrey ( G.), Sur la nature analytique des solutions des équations aux dérivées partielles, Ann. Sci. Ec. Norm. Sup. , 3ème série 35, 129-90 (o.c.p 243-304) (1918). Zbl46.0721.01JFM46.0721.01
  13. [Lo99] Loray ( F.), Réduction formelle des singularités cuspidales de champs de vecteurs analytiques, Differential Equations , 1581, p. 152-173 (1999). Zbl0985.37014MR1721724
  14. [MR83] Martinet ( J.), Ramis ( J.-P.), Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. Ec. Norm. Sup., 16, p. 571-621 (1983). Zbl0534.34011MR740592
  15. [Olv74] Olver ( F.W.J. ), Asymptotics and special functions, New-York Academic Press (1974). Zbl0303.41035MR435697
  16. [Ram78] Ramis ( J.-P.), Dévissage Gevrey, Astérisque (Soc. Math. France), 59-60, p. 173-204 (1978). Zbl0409.34018MR542737
  17. [Ram80] Ramis ( J.-P.), Les séries k-sommables et leurs applications, Analysis, Microlocal Calcul and Relativistic Quantum Theory, Proceedings "Les Houches" 1979, Springer, Lecture Notes in Physics, 126, p. 178-199 (1980). MR579749
  18. [RS96] Ramis ( J.-P.), Schäfke ( R.), Gevrey separation of fast and slow variables, Nonlinearity, 9, p. 353-84 (1996). Zbl0925.70161MR1384480
  19. [Tho90] Thomann ( J.), Resommation des séries formelles solutions d'équations différentielles linéaires ordinaires du second ordre dans le champ complexe au voisinage de singularités irrégulières, Numer. Math., 58, p. 503-535 (1990). Zbl0701.30002MR1080304

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.