Divergence and summability of normal forms of systems of differential equations with nilpotent linear part
Mireille Canalis-Durand; Reinhard Schäfke
Annales de la Faculté des sciences de Toulouse : Mathématiques (2004)
- Volume: 13, Issue: 4, page 493-513
- ISSN: 0240-2963
Access Full Article
topHow to cite
topCanalis-Durand, Mireille, and Schäfke, Reinhard. "Divergence and summability of normal forms of systems of differential equations with nilpotent linear part." Annales de la Faculté des sciences de Toulouse : Mathématiques 13.4 (2004): 493-513. <http://eudml.org/doc/73634>.
@article{Canalis2004,
author = {Canalis-Durand, Mireille, Schäfke, Reinhard},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Hamiltonian system; prenormal form; generic perturbation},
language = {eng},
number = {4},
pages = {493-513},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Divergence and summability of normal forms of systems of differential equations with nilpotent linear part},
url = {http://eudml.org/doc/73634},
volume = {13},
year = {2004},
}
TY - JOUR
AU - Canalis-Durand, Mireille
AU - Schäfke, Reinhard
TI - Divergence and summability of normal forms of systems of differential equations with nilpotent linear part
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2004
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 13
IS - 4
SP - 493
EP - 513
LA - eng
KW - Hamiltonian system; prenormal form; generic perturbation
UR - http://eudml.org/doc/73634
ER -
References
top- [AS64] Abramowitz ( M. ), Stegun Editors ( I.A.), Handbook of Mathematical Functions , Dover Press, New York (1964).
- [Ca91] Canalis-Durand ( M.), Formal expansions of van der Pol equation canard solutions are Gevrey, in Dynamic bifurcations, E. Benoit Ed., Lecture Notes in Math., 1493, 29-39 (1991) ou C. R. Acad. Sci., série I311, p. 27-30 (1990). Zbl0875.34014MR1166995
- [Ca03] Canalis-Durand ( M.), Gevrey normal form of system of differential equations with a nilpotent linear part, IRMA Lectures in Mathematics and Theoretical Physics. From Combinatories to Dynamical Systems, F. Fauvet and C. Mitschi eds., W. de Gruyter , (2003), 131-162. Zbl1045.34013MR2049424
- [CDG89] Canalis-Durand ( M.), Diener ( F.), Gaetano ( M.), Calcul des valeurs à canard à l'aide de Macsyma, in Mathématiques Finitaires et Analyse Non Standard, Luminy1985, M. Diener, G. Wallet Eds., Preprint URA 212, U.F.R. de Math., Univ. Paris 7, 4 place Jussieu, 75251 Paris Cedex, France, p. 149-163 (1989).
- [CK99] Costin ( O.), Kruskal ( M.), On optimal truncation of divergent series solutions of nonlinear differential systems; Berry smoothing, Proc. R. Soc. Lond., A455, p. 1931-1956 (1999). Zbl0945.34071MR1701558
- [CM88] Cerveau ( D.), Moussu ( R.), Groupes d'automorphismes de (C, 0)et équations différentielles ydy + ... = 0, Publ. Soc. Math. , France, 116, p. 459-488 (1988). Zbl0696.58011MR1005391
- [CMT01] Canalis-Durand ( M.), Michel ( F.), Teisseyre ( M.), Algorithms for Formal Reduction of Vector Fields Singularities, Journal on Dynamical and Control Systems, vol. 7, n°. 1, p. 101-125 (2001). Zbl1029.34029
- [CRSS00] Canalis-Durand ( M.), Ramis ( J.-P.), Schäfke ( R.), Sibuya ( Y.), Gevrey solutions of singularly perturbed differential equations, Für Die Reine Und Angewandte Mathematik, Crelles Journal, 518,p. 95-129 (2000). Zbl0937.34075
- [CS00] Canalis-Durand ( M.), Schäfke ( R.), Caractère Gevrey de la normalisation de Frank Loray pour une certaine équation différentielle nilpotente, Communication in Journées des Equations Différentielles et de Calcul Formel , Lille, p. 16-18 (mars 2000 ).
- [CS03] Canalis-Durand ( M.), Schäfke ( R.), On the normal form of a system of differential equations with nilpotent linear part, C. R. Acad. Sci., Sér. I336, p. 129-134 (2003). Zbl1036.34105MR1969566
- [Eca85] Ecalle ( J.), Les fonctions résurgentes. III: L'équation du pont et la classification analytique des objets locaux, Publ. Math. Orsay, Paris, p. 85-05 (1985). Zbl0602.30029MR852210
- [Gev18] Gevrey ( G.), Sur la nature analytique des solutions des équations aux dérivées partielles, Ann. Sci. Ec. Norm. Sup. , 3ème série 35, 129-90 (o.c.p 243-304) (1918). Zbl46.0721.01JFM46.0721.01
- [Lo99] Loray ( F.), Réduction formelle des singularités cuspidales de champs de vecteurs analytiques, Differential Equations , 1581, p. 152-173 (1999). Zbl0985.37014MR1721724
- [MR83] Martinet ( J.), Ramis ( J.-P.), Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. Ec. Norm. Sup., 16, p. 571-621 (1983). Zbl0534.34011MR740592
- [Olv74] Olver ( F.W.J. ), Asymptotics and special functions, New-York Academic Press (1974). Zbl0303.41035MR435697
- [Ram78] Ramis ( J.-P.), Dévissage Gevrey, Astérisque (Soc. Math. France), 59-60, p. 173-204 (1978). Zbl0409.34018MR542737
- [Ram80] Ramis ( J.-P.), Les séries k-sommables et leurs applications, Analysis, Microlocal Calcul and Relativistic Quantum Theory, Proceedings "Les Houches" 1979, Springer, Lecture Notes in Physics, 126, p. 178-199 (1980). MR579749
- [RS96] Ramis ( J.-P.), Schäfke ( R.), Gevrey separation of fast and slow variables, Nonlinearity, 9, p. 353-84 (1996). Zbl0925.70161MR1384480
- [Tho90] Thomann ( J.), Resommation des séries formelles solutions d'équations différentielles linéaires ordinaires du second ordre dans le champ complexe au voisinage de singularités irrégulières, Numer. Math., 58, p. 503-535 (1990). Zbl0701.30002MR1080304
Citations in EuDML Documents
top- Patrick Bonckaert, Freek Verstringe, Normal forms with exponentially small remainder and Gevrey normalization for vector fields with a nilpotent linear part
- Eric Lombardi, Laurent Stolovitch, Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.