The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

A note on infinite a S -groups

Reza NikandishBabak Miraftab — 2015

Czechoslovak Mathematical Journal

Let G be a group. If every nontrivial subgroup of G has a proper supplement, then G is called an a S -group. We study some properties of a S -groups. For instance, it is shown that a nilpotent group G is an a S -group if and only if G is a subdirect product of cyclic groups of prime orders. We prove that if G is an a S -group which satisfies the descending chain condition on subgroups, then G is finite. Among other results, we characterize all abelian groups for which every nontrivial quotient group is an a S -group....

Some classes of perfect strongly annihilating-ideal graphs associated with commutative rings

Mitra JalaliAbolfazl TehranianReza NikandishHamid Rasouli — 2020

Commentationes Mathematicae Universitatis Carolinae

Let R be a commutative ring with identity and A ( R ) be the set of ideals with nonzero annihilator. The strongly annihilating-ideal graph of R is defined as the graph SAG ( R ) with the vertex set A ( R ) * = A ( R ) { 0 } and two distinct vertices I and J are adjacent if and only if I Ann ( J ) ( 0 ) and J Ann ( I ) ( 0 ) . In this paper, the perfectness of SAG ( R ) for some classes of rings R is investigated.

More on the strongly 1-absorbing primary ideals of commutative rings

Ali YassineMohammad Javad NikmehrReza Nikandish — 2024

Czechoslovak Mathematical Journal

Let R be a commutative ring with identity. We study the concept of strongly 1-absorbing primary ideals which is a generalization of n -ideals and a subclass of 1 -absorbing primary ideals. A proper ideal I of R is called strongly 1-absorbing primary if for all nonunit elements a , b , c R such that a b c I , it is either a b I or c 0 . Some properties of strongly 1-absorbing primary ideals are studied. Finally, rings R over which every semi-primary ideal is strongly 1-absorbing primary, and rings R over which every strongly...

Page 1

Download Results (CSV)