Propagation des singularités des solutions d'équations pseudo-différentielles quasi-homogènes
Notre objet est de décrire des résultats de propagation des singularités pour des opérateurs pseudo-différentiels dont le symbole se comporte comme une somme asymptotique de fonctions quasi homogènes ; c’est le cas par exemple des opérateurs pseudo-différentiels à caractéristiques multiples involutifs une fois réduits par une transformation canonique convenable. Nous prouvons ces résultats à l’aide d’une version microlocale des estimations de Carleman, les fonctions-poids ayant été adaptées à notre...